
A Study of the Behavior of Several Methods for Balancing
Machine Learning Training Data

Gustavo E. A. P. A. Batista
Ronaldo C. Prati

Maria Carolina Monard
Instituto de Ciências Matemáticas e de Computação

Caixa Postal 668, 13560-970
São Carlos - SP, Brazil

{gbatista, prati, mcmonard}@icmc.usp.br

ABSTRACT
There are several aspects that might influence the perfor-
mance achieved by existing learning systems. It has been
reported that one of these aspects is related to class imbal-
ance in which examples in training data belonging to one
class heavily outnumber the examples in the other class. In
this situation, which is found in real world data describing
an infrequent but important event, the learning system may
have difficulties to learn the concept related to the minority
class. In this work we perform a broad experimental evalu-
ation involving ten methods, three of them proposed by the
authors, to deal with the class imbalance problem in thirteen
UCI data sets. Our experiments provide evidence that class
imbalance does not systematically hinder the performance
of learning systems. In fact, the problem seems to be related
to learning with too few minority class examples in the pres-
ence of other complicating factors, such as class overlapping.
Two of our proposed methods deal with these conditions
directly, allying a known over-sampling method with data
cleaning methods in order to produce better-defined class
clusters. Our comparative experiments show that, in gen-
eral, over-sampling methods provide more accurate results
than under-sampling methods considering the area under
the ROC curve (AUC). This result seems to contradict re-
sults previously published in the literature. Two of our pro-
posed methods, Smote + Tomek and Smote + ENN, pre-
sented very good results for data sets with a small number of
positive examples. Moreover, Random over-sampling, a very
simple over-sampling method, is very competitive to more
complex over-sampling methods. Since the over-sampling
methods provided very good performance results, we also
measured the syntactic complexity of the decision trees in-
duced from over-sampled data. Our results show that these
trees are usually more complex then the ones induced from
original data. Random over-sampling usually produced the
smallest increase in the mean number of induced rules and
Smote + ENN the smallest increase in the mean number of
conditions per rule, when compared among the investigated
over-sampling methods.

1. INTRODUCTION
Most learning systems usually assume that training sets used

for learning are balanced. However, this is not always the
case in real world data where one class might be represented
by a large number of examples, while the other is represented
by only a few. This is known as the class imbalance problem
and is often reported as an obstacle to the induction of good
classifiers by Machine Learning (ML) algorithms. Generally,
the problem of imbalanced data sets occurs when one class
represents a circumscribed concept, while the other class
represents the counterpart of that concept, so that examples
from the counterpart class heavily outnumber examples from
the positive class. This sort of data is found, for example,
in medical record databases regarding a rare disease, were
there is a large number of patients who do not have that
disease; continuous fault-monitoring tasks where non-faulty
examples heavily outnumber faulty examples, and others.

In recent years, there have been several attempts at dealing
with the class imbalance problem in the field of Data Mining
and Knowledge Discovery in Databases, to which ML is a
substantial contributor. Related papers have been published
in the ML literature aiming to overcome this problem. The
ML community seems to agree on the hypothesis that the
imbalance between classes is the major obstacle in induc-
ing classifiers in imbalanced domains. However, it has also
been observed that in some domains, for instance the Sick
data set [3], standard ML algorithms are capable of induc-
ing good classifiers, even using highly imbalanced training
sets. This shows that class imbalance is not the only prob-
lem responsible for the decrease in performance of learning
algorithms.

In [18] we developed a systematic study aiming to ques-
tion whether class imbalances hinder classifier induction or
whether these deficiencies might be explained in other ways.
Our study was developed on a series of artificial data sets in
order to fully control all the variables we wanted to analyze.
The results of our experiments, using a discrimination-based
inductive scheme, suggested that the problem is not solely
caused by class imbalance, but is also related to the degree
of data overlapping among the classes.

The results obtained in this previous work motivated the
proposition of two new methods to deal with the problem of
learning in the presence of class imbalance. These methods
ally a known over-sampling method, namely Smote [5], with
two data cleaning methods: Tomek links [22] and Wilson’s
Edited Nearest Neighbor Rule [24]. The main motivation
behind these methods is not only to balance the training

Sigkdd Explorations. Volume 6, Issue 1 - Page 20

data, but also to remove noisy examples lying on the wrong
side of the decision border. The removal of noisy examples
might aid in finding better-defined class clusters, therefore,
allowing the creation of simpler models with better general-
ization capabilities.

In addition, in this work we perform a broad experimental
evaluation involving ten methods, three of them proposed
by the authors, to deal with the class imbalance problem in
thirteen UCI data sets. We concluded that over-sampling
methods are able to aid in the induction of classifiers that
are more accurate than those induced from under-sampled
data sets. This result seems to contradict results previously
published in the literature. Two of our proposed methods
performed well in practice, in particular for data sets with
a small number of positive examples. It is worth noting
that Random over-sampling, a very simple over-sampling
method, is very competitive to more complex over-sampling
methods.

The remainder of the paper is organized as follows: Section 2
discusses why learning from imbalanced data sets might be
a difficult task. Section 3 describes the drawbacks of using
accuracy (or error rate) to measure the performance of clas-
sifiers and discusses alternative metrics. Section 4 presents
the methods employed in the experimental evaluation, in-
cluding the three methods proposed by the authors. Sec-
tion 5 discusses the methodology used in the experiments,
as well as the results achieved. Finally, Section 6 presents
the conclusions and outlines future research.

2. WHY LEARNING FROM IMBALANCED
DATA SETS MIGHT BE DIFFICULT

Learning from imbalanced data sets is often reported as
being a difficult task. In order to better understand this
problem, imagine the situation illustrated in Figure 1. In
Fig. 1(a) there is a large imbalance between the majority
class (-) and the minority class (+), and the data set presents
some degree of class overlapping. A much more comfortable
situation for learning is represented in Fig. 1(b), where the
classes are balanced with well-defined clusters.

In a situation similar to the one illustrated in Fig. 1(a),
spare cases from the minority class may confuse a classifier
like k-Nearest Neighbor (k-NN). For instance, 1-NN may in-
correctly classify many cases from the minority class because
the nearest neighbors of these cases are examples belonging
to the majority class. In a situation where the imbalance is
very high, the probability of the nearest neighbor of a mi-
nority class case is a case of the majority class is likely to
be high, and the minority class error rate will tend to have
high values, which is unacceptable.

Figure 1: Many negative cases against some spare positive
cases (a) balanced data set with well-defined clusters (b).

Decision trees also experience a similar problem. In the pres-
ence of class overlapping, decision trees may need to create
many tests to distinguish the minority class cases from ma-
jority class cases. Pruning the decision tree might not nec-
essarily alleviate the problem. This is due to the fact that
pruning removes some branches considered too specialized,
labelling new leaf nodes with the dominant class on this
node. Thus, there is a high probability that the majority
class will also be the dominant class of those leaf nodes.

3. ON EVALUATING CLASSIFIERS IN IM-
BALANCED DOMAINS

The most straightforward way to evaluate the performance
of classifiers is based on the confusion matrix analysis. Ta-
ble 1 illustrates a confusion matrix for a two class problem
having positive and negative class values. From such a
matrix it is possible to extract a number of widely used
metrics for measuring the performance of learning systems,
such as Error Rate, defined as Err = FP+FN

TP+FN+FP+TN
and

Accuracy, defined as Acc = TP+TN
TP+FN+FP+TN

= 1− Err.

Table 1: Confusion matrix for a two-class problem.
Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Negative (FN)
Negative Class False Positive (FP) True Negative (TN)

However, when the prior class probabilities are very differ-
ent, the use of such measures might lead to misleading con-
clusions. Error rate and accuracy are particularly suspicious
performance measures when studying the effect of class dis-
tribution on learning since they are strongly biased to favor
the majority class. For instance, it is straightforward to
create a classifier having an accuracy of 99% (or an error
rate of 1%) in a domain where the majority class proportion
corresponds to 99% of the examples, by simply forecasting
every new example as belonging to the majority class.

Another fact against the use of accuracy (or error rate) is
that these metrics consider different classification errors to
be equally important. However, highly imbalanced problems
generally have highly non-uniform error costs that favor the
minority class, which is often the class of primary interest.
For instance, a sick patient diagnosed as healthy might be
a fatal error while a healthy patient diagnosed as sick is
considered a much less serious error since this mistake can
be corrected in future exams.

Finally, another point that should be considered when study-
ing the effect of class distribution on learning systems is that
the class distribution may change. Consider the confusion
matrix shown in Table 1. Note that the class distribution
(the proportion of positive to negative examples) is the re-
lationship between the first and second lines. Any perfor-
mance metric that uses values from both lines will be inher-
ently sensitive to class skews. Metrics such as accuracy and
error rate use values from both lines of the confusion matrix.
As class distribution changes, these measures will change as
well, even if the fundamental classifier performance does not.

All things considered, it would be more interesting if we use
a performance metric that disassociates the errors (or hits)
that occurred in each class. From Table 1 it is possible to
derive four performance metrics that directly measure the
classification performance on positive and negative classes
independently:

Sigkdd Explorations. Volume 6, Issue 1 - Page 21

False negative rate FNrate = FN
TP+FN

is the percentage
of positive cases misclassified as belonging to the nega-
tive class;

False positive rate FPrate = FP
FP+TN

is the percentage
of negative cases misclassified as belonging to the posi-
tive class;

True negative rate TNrate = TN
FP+TN

is the percentage
of negative cases correctly classified as belonging to the
negative class;

True positive rate TPrate = TP
TP+FN

is the percentage
of positive cases correctly classified as belonging to the
positive class.

These four performance measures have the advantage of be-
ing independent of class costs and prior probabilities. The
aim of a classifier is to minimize the false positive and neg-
ative rates or, similarly, to maximize the true negative and
positive rates. Unfortunately, for most real world applica-
tions there is a tradeoff between FNrate and FPrate, and
similarly between TNrate and TPrate. ROC (Receiver Op-
erating Characteristic) graphs [19] can be used to analyze
the relationship between FNrate and FPrate (or TNrate and
TPrate) for a classifier.

Some classifiers, such as the Näıve Bayes classifier or some
Neural Networks, yield a score that represents the degree to
which an example is a member of a class. Such ranking can
be used to produce several classifiers, by varying the thresh-
old of an example pertaining to a class. Each threshold
value produces a different point in the ROC space. These
points are linked by tracing straight lines through two con-
secutive points to produce a ROC curve. For decision trees,
we could use the class distributions at each leaf as a score or,
as proposed in [9], by ordering the leaves by their positive
class accuracy and producing several trees by re-labelling the
leaves, one at a time, from all forecasting negative class to
all forecasting positive class in the positive accuracy order.

A ROC graph characterizes the performance of a binary
classification model across all possible trade-offs between the
classifier sensitivity (TPrate) and false alarm (FPrate). ROC
graphs are consistent for a given problem, even if the distri-
bution of positive and negative examples is highly skewed.
A ROC analysis also allows the performance of multiple
classification functions to be visualized and compared si-
multaneously. The area under the ROC curve (AUC) rep-
resents the expected performance as a single scalar. The
AUC has a known statistical meaning: it is equivalent to
the Wilconxon test of ranks, and is equivalent to several
other statistical measures for evaluating classification and
ranking models [10]. In this work, we use the method pro-
posed in [9] with Laplace correction for measuring the leaf
accuracy to produce ROC curves. We also use the AUC as
the main method for assessing our experiments.

4. METHODS
This section describes the notation used as well as our im-
plementation of the k-NN algorithm, since this algorithm
plays an important role in the behavior of the methods con-
sidered. Finally, an explanation of each balancing method
is given.

4.1 Notation
In supervised learning, the inducer is fed with a data set
E = {E1, E2, . . . EN}, in which each example Ei ∈ E has

an associated label. This label defines the class the example
belongs to. Each example Ei ∈ E is a tuple Ei = (~xi, yi)
in which ~xi is a vector of feature (or attribute) values of
the example Ei, and yi is its class value. The objective of a
supervised learning algorithm is to induce a general mapping
of vectors ~x to values y. Thus, the learning system aims to
construct a model y = f(~x), of an unknown function f , also
known as concept function, that enables one to predict the y
values for previously unseen examples. In practice, learning
systems are able to induce a function h that approximates
f , i.e., h(~x) ≈ f(~x). In this case, h is called the hypothesis
of the concept function f .

In Table 2 a data set with N examples and M attributes is
presented. Columns (A1, . . . AM) represent the attributes
and lines (E1, . . . EN) represent the examples. For instance,
line i in Table 2 refers to the ith example and the entry xij

refers to the value of the jth attribute, Aj , of example i. For
classification problems, the class-attribute Y is a qualitative
attribute that may assume a set of NCl discrete values C =
{C1, C2, . . . CNCl}.

Table 2: Data set in the attribute-value form.
A1 A2 · · · AM Y

E1 x11 x12 · · · x1M y1

E2 x21 x22 · · · x2M y2

...
...

...
. . .

...
...

EN xN1 xN2 . . . xNM yN

As stated earlier, in this work we consider two-class prob-
lems where C1 = + represents the circumscribed concept
class and C2 = − represents the counterpart of that con-
cept. Furthermore, the examples from the negative class
outnumber the examples from the positive class.

4.2 Our Implementation of the k-NN Algo-
rithm

Several research papers use the Euclidean distance as a dis-
tance metric for the k-NN algorithm. However, this distance
function might not be appropriate when the domain presents
qualitative attributes. For those domains, the distance for
qualitative attributes is usually calculated using the over-
lap function, in which the value 0 (if two examples have the
same value for a given attribute) or the value 1 (if these val-
ues differ) are assigned. Our implementation of the k-NN
algorithm uses the Heterogeneous Value Difference Metric
(HVDM) distance function [25]. This distance function uses
the Euclidean distance for quantitative attributes and the
VDM distance [21] for qualitative attributes. The VDM
metric provides a more appropriate distance function for
qualitative attributes if compared with the overlap metric,
since the VDM metric considers the classification similarity
for each possible value of a qualitative attribute to calculate
the distances between these values.

Another refinement to the basic k-NN algorithm is to weigh
the contribution of each of the k neighbors according to their
distance to the query example Eq, giving greater weight to
closer neighbors. The vote of each neighbor is weighed ac-
cording to the inverse square of its distance from Eq [17].

Given Ê = {Ê1, Ê2, . . . Êk}, the set of k nearest neighbors
of Eq, according to the distance function d the final classifi-
cation is given by Equation 1.

Sigkdd Explorations. Volume 6, Issue 1 - Page 22

h(Eq) = arg max
c∈C

k∑
i=1

ωiδ(c, f(Êi)) ωi =
1

d(Eq, Êi)2
(1)

and δ(a, b) = 1 if a = b otherwise δ(a, b) = 0.

As the balancing methods make severe use of distance com-
putations, we implemented an indexing structure namely
M-tree [6] to speed up the execution of k-NN queries. M-
tree only considers relative distances of examples rather than
their absolute positions in a multi-dimensional space, to or-
ganize and partition the metric space. In a metric space,
example proximity is only defined by a distance function
that satisfies the positivity, symmetry and triangle inequal-
ity postulates.

4.3 Methods
In this work, we evaluate ten different methods of under and
over-sampling to balance the class distribution on training
data. Two of these methods, random over-sampling and ran-
dom under-sampling, are non-heuristic methods that were
initially included in this evaluation as baseline methods.
The evaluated methods are described next.

Random over-sampling is a non-heuristic method that
aims to balance class distribution through the random
replication of minority class examples.

Random under-sampling is also a non-heuristic method
that aims to balance class distribution through the ran-
dom elimination of majority class examples.

Several authors agree that random over-sampling can in-
crease the likelihood of occurring overfitting, since it makes
exact copies of the minority class examples. In this way, a
symbolic classifier, for instance, might construct rules that
are apparently accurate, but actually cover one replicated
example. On the other hand, the major drawback of ran-
dom under-sampling is that this method can discard poten-
tially useful data that could be important for the induction
process. The remainder balancing methods use heuristics in
order to overcome the limitations of the non-heuristic meth-
ods.

Tomek links Tomek links [22] can be defined as follows:
given two examples Ei and Ej belonging to different
classes, and d(Ei, Ej) is the distance between Ei and
Ej . A (Ei, Ej) pair is called a Tomek link if there is
not an example El, such that d(Ei, El) < d(Ei, Ej) or
d(Ej , El) < d(Ei, Ej). If two examples form a Tomek
link, then either one of these examples is noise or both
examples are borderline. Tomek links can be used as an
under-sampling method or as a data cleaning method.
As an under-sampling method, only examples belong-
ing to the majority class are eliminated, and as a data
cleaning method, examples of both classes are removed.

Condensed Nearest Neighbor Rule Hart’s Condensed
Nearest Neighbor Rule (CNN) [11] is used to find a con-

sistent subset of examples. A subset Ê ⊆ E is consis-
tent with E if using a 1-nearest neighbor, Ê correctly
classifies the examples in E. An algorithm to create a
subset Ê from E as an under-sampling method is the
following [14]: First, randomly draw one majority class
example and all examples from the minority class and
put these examples in Ê. Afterwards, use a 1-NN over

the examples in Ê to classify the examples in E. Ev-
ery misclassified example from E is moved to Ê. It is
important to note that this procedure does not find the
smallest consistent subset from E. The idea behind this
implementation of a consistent subset is to eliminate the
examples from the majority class that are distant from
the decision border, since these sorts of examples might
be considered less relevant for learning.

One-sided selection One-sided selection (OSS) [14] is an
under-sampling method resulting from the application of
Tomek links followed by the application of CNN. Tomek
links are used as an under-sampling method and removes
noisy and borderline majority class examples. Border-
line examples can be considered “unsafe” since a small
amount of noise can make them fall on the wrong side
of the decision border. CNN aims to remove examples
from the majority class that are distant from the decision
border. The remainder examples, i.e. “safe” majority
class examples and all minority class examples are used
for learning.

CNN + Tomek links This is one of the methods pro-
posed in this work. It is similar to the one-sided se-
lection, but the method to find the consistent subset
is applied before the Tomek links. Our objective is to
verify its competitiveness with OSS. As finding Tomek
links is computationally demanding, it would be compu-
tationally cheaper if it was performed on a reduced data
set.

Neighborhood Cleaning Rule Neighborhood Cleaning
Rule (NCL) [15] uses the Wilson’s Edited Nearest Neigh-
bor Rule (ENN) [24] to remove majority class examples.
ENN removes any example whose class label differs from
the class of at least two of its three nearest neighbors.
NCL modifies the ENN in order to increase the data
cleaning. For a two-class problem the algorithm can be
described in the following way: for each example Ei in
the training set, its three nearest neighbors are found.
If Ei belongs to the majority class and the classification
given by its three nearest neighbors contradicts the orig-
inal class of Ei, then Ei is removed. If Ei belongs to the
minority class and its three nearest neighbors misclas-
sify Ei, then the nearest neighbors that belong to the
majority class are removed.

Smote Synthetic Minority Over-sampling Technique (Smo-
te) [5] is an over-sampling method. Its main idea is to
form new minority class examples by interpolating be-
tween several minority class examples that lie together.
Thus, the overfitting problem is avoided and causes the
decision boundaries for the minority class to spread fur-
ther into the majority class space.

Smote + Tomek links Although over-sampling minority
class examples can balance class distributions, some other
problems usually present in data sets with skewed class
distributions are not solved. Frequently, class clusters
are not well defined since some majority class exam-
ples might be invading the minority class space. The
opposite can also be true, since interpolating minority
class examples can expand the minority class clusters,
introducing artificial minority class examples too deeply
in the majority class space. Inducing a classifier un-
der such a situation can lead to overfitting. In order to
create better-defined class clusters, we propose applying
Tomek links to the over-sampled training set as a data

Sigkdd Explorations. Volume 6, Issue 1 - Page 23

Figure 2: Balancing a data set: original data set (a); over-
sampled data set (b); Tomek links identification (c); and
borderline and noise examples removal (d).

cleaning method. Thus, instead of removing only the
majority class examples that form Tomek links, exam-
ples from both classes are removed. The application of
this method is illustrated in Figure 2. First, the original
data set (a) is over-sampled with Smote (b), and then
Tomek links are identified (c) and removed, producing
a balanced data set with well-defined class clusters (d).
The Smote + Tomek links method was first used to im-
prove the classification of examples for the problem of
annotation of proteins in Bioinformatics [1].

Smote + ENN The motivation behind this method is sim-
ilar to Smote + Tomek links. ENN tends to remove
more examples than the Tomek links does, so it is ex-
pected that it will provide a more in depth data clean-
ing. Differently from NCL which is an under-sampling
method, ENN is used to remove examples from both
classes. Thus, any example that is misclassified by its
three nearest neighbors is removed from the training set.

5. EXPERIMENTAL EVALUATION
The main objective of our research is to compare several bal-
ancing methods published in the literature, as well as the
three proposed methods, in order to verify whether those
methods can effectively deal in practice with the problem of
class imbalance. To make this comparison, we have selected
thirteen data sets from UCI [3] which have different degrees
of imbalance. Table 3 summarizes the data employed in this
study. For each data set, it shows the number of examples
(#Examples), number of attributes (#Attributes), number
of quantitative and qualitative attributes, class attribute dis-
tribution and the majority class error. For data sets having
more than two classes, we chose the class with fewer ex-
amples as the positive class, and collapsed the remainder
as the negative class. As the Letter and Splice data sets
have a similar number of examples in the minority classes,
we created two data sets with each of them: Letter-a and
Letter-vowel, Splice-ie and Splice-ei.

In our experiments, we used release 8 of the C4.5 symbolic
learning algorithm to induce decision trees [20]. Firstly,

we ran C4.5 over the original (imbalanced) data sets and
calculated the AUC for each data set using 10-fold cross-
validation. The results obtained in this initial experiment
are shown in a graph in Figure 3.

Figure 3: Proportion of negative/positive examples versus
AUC.

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

A
U

C
 (

%
)

Proportion of negative/positive examples

Pima
German

Post-operative
Haberman

Splice-ie
Splice-ei
Vehicle

Letter-vowel

New-thyroid
E-coli

Satimage
Flag

Glass
Letter-a
Nursery

Figure 3 plots the proportion of negative/positive examples
versus the mean AUC values for the original data sets. If
class imbalances can systematically hinder the performance
of imbalanced data sets, then it would be expected that
AUC decreases for highly imbalanced data sets. However,
in spite of a large degree of imbalance the data sets Letter-a
and Nursery obtained almost 100% AUC.

The results obtained in the UCI data sets seem to be com-
patible with previous work of the authors [18] conducted on
a series of experiments with artificial domains, in which we
varied the degree of overlapping between the classes. It was
concluded that class imbalance, by itself, does not seem to
be a problem, but when allied to highly overlapped classes,
it can significantly decrease the number of minority class ex-
amples correctly classified. Domains with non-overlapping
classes do not seem to be problematic for learning no mat-
ter the degree of imbalance. Moreover, in [12] Japkowicz
performed several experiments on artificial data sets and
concluded that class imbalances do not seem to systemat-
ically cause performance degradation. She concludes that
the imbalance problem is a relative problem depending on
both the complexity of the concept1 and the overall size of
the training set.

The relationship between training set size and improper clas-
sification performance for imbalanced data sets seems to be
that on small imbalanced data sets the minority class is
poorly represented by an excessively reduced number of ex-
amples, that might not be sufficient for learning, especially
when a large degree of class overlapping exists and the class
is further divided into subclusters. For larger data sets, the
effect of these complicating factors seems to be reduced, as
the minority class is better represented by a larger number
of examples. This trend is confirmed by the graph shown
in Figure 4 which shows how the AUC is affected by the
number of positive training examples in the data sets.

In a second stage, the over and under-sampling methods de-
scribed in Section 4 were applied to the original data sets.

1Where the “concept complexity” corresponds to the num-
ber of subclusters into which the classes are subdivided.

Sigkdd Explorations. Volume 6, Issue 1 - Page 24

Table 3: Data sets summary descriptions.
Data set #Examples #Attributes Class Class % Majority

(quanti., quali.) (min., maj.) (min., maj.) Error
Pima 768 8 (8,0) (1, 0) (34.77%, 65.23%) 65.23%
German 1000 20 (7,13) (Bad, Good) (30.00%, 70.00%) 70.00%
Post-operative 90 8 (1,7) (S, remainder) (26.67%, 73.33%) 73.33%
Haberman 306 3 (3,0) (Die, Survive) (26.47%, 73.53%) 73.53%
Splice-ie 3176 60 (0,60) (ie, remainder) (24.09%, 75.91%) 75.91%
Splice-ei 3176 60 (0,60) (ei, remainder) (23.99%, 76.01%) 76.01%
Vehicle 846 18 (18,0) (van, remainder) (23.52%, 76.48%) 76.48%
Letter-vowel 20000 16 (16,0) (all vowels, remainder) (19.39%, 80.61%) 80.61%
New-thyroid 215 5 (5,0) (hypo, remainder) (16.28%, 83.72%) 83.72%
E.Coli 336 7 (7,0) (iMU, remainder) (10.42%, 89.58%) 89.58%
Satimage 6435 36 (36,0) (4, remainder) (9.73%, 90.27%) 90.27%
Flag 194 28 (10,18) (white, remainder) (8.76%, 91.24%) 91.24%
Glass 214 9 (9,0) (Ve-win-float-proc, remainder) (7.94%, 92.06%) 92.06%
Letter-a 20000 16 (16,0) (a, remainder) (3.95%, 96.05%) 96.05%
Nursery 12960 8 (8,0) (not recom, remainder) (2.55%, 97.45%) 97.45%

Figure 4: Number of positive training examples versus AUC.

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

A
U

C
 (

%
)

Number of positive examples

Pima
German

Post-operative
Haberman

Splice-ie
Splice-ei
Vehicle

Letter-vowel

New-thyroid
E-coli

Satimage
Flag

Glass
Letter-a
Nursery

Smote, Random over-sampling, Random under-sampling and
CNN methods have internal parameters that allow the user
to set up the resulting class distribution obtained after the
application of these methods. We decided to add/remove
examples until a balanced distribution was reached. This
decision is motivated by the results presented in [23], in
which it is shown that when AUC is used as performance
measure, the best class distribution for learning tends to be
near the balanced class distribution.

The results obtained in our experiments are summarized
in Tables 4 and 5. Table 4 shows the performance results
for the original, as well as for the over-sampled data sets.
Table 5 shows the results obtained for the under-sampled
data sets. The performance results are reported in terms of
AUC. The numbers between brackets are the corresponding
standard deviations. As stated earlier, these results were
obtained with 10-fold cross-validation. AUCs were measured
over decision trees pruned with the default C4.5 pruning
parameter setting (25% confidence level) and over unpruned
decision trees.

Although some research papers state that pruning might be
helpful with imbalanced data sets in some circumstances [4],
other papers indicate that when target misclassification costs
or class distributions are unknown, then pruning should be
avoided [26; 2]. One reason to avoid pruning is that most
pruning schemes, including the one used by C4.5, attempt
to minimize the overall error rate. These pruning schemes

can be detrimental to the minority class, since reducing the
error rate in the majority class, which stands for most of the
examples, would result in a greater impact over the overall
error rate. On the other hand, it still seems to be an open-
ended question if pruning can lead to a performance im-
provement for decision trees grown over artificially balanced
data sets. One argument against pruning is that if pruning
is allowed to execute under these conditions, the learning
system would prune based on false assumption, i.e., that
the test set distribution matches the training set distribu-
tion [23].

Figure 5 shows a comparison of the effect of pruning de-
cision trees on the original and balanced data sets. Line
x = y represents when both pruned and unpruned decision
trees obtain the same AUC. Plots above this line represent
that unpruned decision trees obtained better results, and
plots under this line the opposite. Figure 5 clearly shows
that pruning rarely leads to an improvement in AUC for the
original and balanced data sets.

Figure 5: AUC of pruned versus unpruned decision trees for
the original and balanced data sets.

 40

 50

 60

 70

 80

 90

 100

 40 50 60 70 80 90 100

A
U

C
 U

np
ru

ne
d

(%
)

AUC Pruned (%)

Original
CNN

CNN+Tomek
Tomek

OSS
Random under-sampling

Random over-sampling
NCL

Smote
Smote+ENN

Smote+Tomek

In Tables 4 and 5 the results in bold indicate the best AUCs
obtained for each data set considering pruned and unpruned
decision trees independently. Note that all best results were
obtained by the over-sampling methods. In order to facili-
tate the analysis of the results, Tables 6 and 7 present these
results as a ranking of methods for pruned and unpruned
decision trees respectively. The over-sampling methods are

Sigkdd Explorations. Volume 6, Issue 1 - Page 25

Table 4: AUC results for the original and over-sampled data sets.
Data set Pruning Original Rand Over Smote Smote+Tomek Smote+ENN

Pima
yes 81.53(5.11) 85.32(4.17) 85.49(5.17) 84.46(5.84) 83.66(4.77)
no 82.33(5.70) 86.03(4.14) 85.97(5.82) 85.56(6.02) 83.64(5.35)

German
yes 79.19(5.84) 84.65(3.80) 80.74(5.43) 81.75(4.78) 80.91(4.36)
no 85.94(4.14) 85.56(4.31) 84.51(4.55) 84.02(3.94) 83.90(3.70))

Post-operative
yes 49.29(2.26) 68.79(23.93) 55.66(24.66) 41.80(16.59) 59.83(33.91)
no 78.23(15.03) 71.33(23.43) 68.19(26.62) 47.99(16.61) 59.48(34.91)

Haberman
yes 58.25(12.26) 71.81(13.42) 72.23(9.82) 75.73(6.55) 76.38(5.51)
no 67.91(13.76) 73.58(14.22) 75.45(11.02) 78.41(7.11) 77.01(5.10)

Splice-ie
yes 98.76(0.56) 98.89(0.47) 98.46(0.87) 98.26(0.51) 97.97(0.74)
no 99.30(0.30) 99.09(0.27) 99.19(0.28) 99.13(0.31) 98.88(0.34)

Splice-ei
yes 98.77(0.46) 98.80(0.44) 98.92(0.44) 98.87(0.44) 98.85(0.60)
no 99.47(0.61) 99.52(0.60) 99.52(0.26) 99.51(0.32) 99.49(0.16)

Vehicle
yes 98.49(0.84) 99.14(0.73) 98.96(0.98) 98.96(0.98) 97.92(1.09)
no 98.45(0.90) 99.13(0.75) 99.04(0.85) 99.04(0.85) 98.22(0.90)

Letter-vowel
yes 98.07(0.63) 98.80(0.32) 98.90(0.20) 98.90(0.20) 98.94(0.22)
no 98.81(0.33) 98.84(0.27) 99.15(0.17) 99.14(0.17) 99.19(0.15)

New-thyroid
yes 94.73(9.24) 98.39(2.91) 98.91(1.84) 98.91(1.84) 99.22(1.72)
no 94.98(9.38) 98.89(2.68) 98.91(1.84) 98.91(1.84) 99.22(1.72)

E.Coli
yes 87.64(15.75) 93.24(6.72) 95.49(4.30) 95.98(4.21) 95.29(3.79)
no 92.50(7.71) 93.55(6.89) 95.49(4.30) 95.98(4.21) 95.29(3.79)

Satimage
yes 93.73(1.91) 95.34(1.25) 95.43(1.03) 95.43(1.03) 95.67(1.18)
no 94.82(1.18) 95.52(1.12) 95.69(1.28) 95.69(1.28) 96.06(1.20)

Flag
yes 45.00(15.81) 79.91(28.72) 73.62(30.16) 79.30(28.68) 79.32(28.83)
no 76.65(27.34) 79.78(28.98) 73.87(30.34) 82.06(29.52) 78.56(28.79)

Glass
yes 88.16(12.28) 92.20(12.11) 91.40(8.24) 91.40(8.24) 92.90(7.30)
no 88.16(12.28) 92.07(12.09) 91.27(8.38) 91.27(8.38) 93.40(7.61)

Letter-a
yes 99.61(0.40) 99.77(0.30) 99.91(0.12) 99.91(0.12) 99.91(0.12)
no 99.67(0.37) 99.78(0.29) 99.92(0.12) 99.92(0.12) 99.91(0.14)

Nursery
yes 99.79(0.11) 99.99(0.01) 99.21(0.55) 99.27(0.36) 97.80(1.07)
no 99.96(0.05) 99.99(0.01) 99.75(0.34) 99.53(0.31) 99.20(0.51)

highlighted with a light gray color, and the results obtained
with the original data sets with a dark gray color. Note that,
in general, over-sampling methods are better ranked than
the under-sampling methods. Hsu’s Multiple Comparison
with the Best (MCB) test was performed in order to ver-
ify if significant differences exist, with 95% confidence level,
among the best ranked method and the remaining methods.
The results are also summarized in Tables 6 and 7, where
methods marked with an asterisk obtained statistically in-
ferior results when compared to the top ranked method.

Conversely, over-sampling methods in general and Random
over-sampling in particular are well-ranked among the re-
mainder methods. This result seems to diverge with several
papers previously published in the literature. Drummond
and Holte [8] report that when using C4.5’s default settings,
over-sampling is surprisingly ineffective, often producing lit-
tle or no change in performance in response to modifications
of misclassification costs and class distribution. Moreover,
they note that over-sampling prunes less and therefore gen-
eralizes less than under-sampling, and that a modification
of the C4.5’s parameter settings to increase the influence
of pruning and other overfitting avoidance factors can re-
establish the performance of over-sampling. In our exper-
iments, Random over-sampling did not produce overfitted
decision trees even when these trees were left unpruned, as
it can be confirmed by the higher AUC values obtained by
this method for unpruned trees. In addition, under-sampling
methods did not perform as well as over-sampling meth-
ods, even when heuristics to remove cases were considered
in under-sampling.

Moreover, Domingos [7] reports that concerning concept
learning problems, C4.5 Rules produces lower cost classi-
fiers using under-sampling than over-sampling. Ling and
Li [16] compare over and under-sampling for boosted C4.5
and report that under-sampling produces better lift index,

although extreme over-sampling performs almost as well.
On the other hand, Japkowicz and Stephen [13] compare
several methods of over and under-sampling on a series of
artificial data sets and conclude that over-sampling is more
effective than under-sampling at reducing error rate.

In our opinion, the good results obtained by over-sampling
are not completely unexpected. As stated before, it seems
that the loss of performance is directly related to the lack of
minority class examples in conjunction with other compli-
cating factors. Over-sampling is the class of methods that
most directly attack the problem of the lack of minority class
examples.

It is worth mentioning that two of our proposed methods,
Smote + Tomek and Smote + ENN are generally ranked
among the best for data sets with a small number of positive
examples. Considering only data sets with less than 100 pos-
itive examples (in our experiments there are 6 of them: Flag,
Glass, Post-operative, New-thyroid, E.Coli and Haberman),
at least one of the proposed methods provided meaningful
results for all 6 data sets for pruned trees – Table 6, and
for 5 of the 6 data sets for unpruned trees – Table 7. This
seems to indicate that these methods could be appropriate
in domains having such conditions.

Since over-sampling methods, as well as unpruned decision
trees obtained very good performance results, further anal-
ysis will focus on these results. In addition to classifier per-
formance results, we also attempted to measure the syntac-
tic complexity of the induced models. Syntactic complexity
is given by two main parameters: the mean number of in-
duced rules (branches) and the mean number of conditions
per rule. Tables 8 and 9 respectively show the mean number
of induced rules and the mean number of condition per rule
for the over-sampling methods and the original data sets
with unpruned decision trees. The best results are shown
in bold, and the best results obtained by an over-sampling

Sigkdd Explorations. Volume 6, Issue 1 - Page 26

Table 5: AUC results for the under-sampled data sets.
Data set Pruning Rand Under CNN CNN+Tomek Tomek OSS NCL

Pima
yes 81.17(3.87) 79.60(6.22) 80.30(3.86) 82.56(5.11) 77.89(5.37) 81.61(4.48)
no 81.49(4.29) 80.08(5.82) 81.71(3.69) 83.11(4.65) 79.23(4.81) 82.55(3.53)

German
yes 79.85(3.05) 79.85(5.56) 79.48(5.01) 78.87(4.27) 79.20(3.15) 77.89(3.85)
no 84.54(3.32) 82.25(5.59) 81.70(4.00) 85.90(3.99) 82.96(3.22) 85.07(3.54)

Post-operative
yes 49.11(14.07) 49.20(8.91) 49.02(11.34) 46.16(5.89) 46.31(18.77) 42.34(28.12)
no 55.52(24.47) 65.69(21.64) 75.79(16.86) 66.45(23.29) 64.44(20.88) 45.62(32.71)

Haberman
yes 66.07(10.26) 58.36(10.26) 55.73(14.31) 64.46(10.95) 62.70(11.50) 68.01(13.99)
no 68.40(10.17) 58.36(10.26) 55.73(14.31) 69.59(13.30) 62.03(11.82) 69.29(14.13)

Splice-ie
yes 97.46(1.10) 98.39(0.64) 97.55(0.46) 98.69(0.51) 97.37(0.84) 98.38(0.57)
no 98.80(0.40) 99.17(0.36) 98.82(0.32) 99.18(0.43) 98.93(0.30) 99.15(0.36)

Splice-ei
yes 98.74(0.46) 98.78(0.46) 98.85(0.42) 98.78(0.46) 98.83(0.45) 98.77(0.47)
no 99.25(0.48) 99.27(0.77) 99.47(0.27) 99.44(0.60) 99.33(0.66) 99.40(0.66)

Vehicle
yes 97.25(1.95) 98.62(0.67) 98.34(1.32) 98.26(0.90) 98.79(0.67) 97.94(1.05)
no 97.80(0.94) 98.64(0.63) 98.42(1.02) 98.41(0.90) 98.71(0.97) 98.17(1.12)

Letter-vowel
yes 97.69(0.43) 98.03(0.37) 97.97(0.46) 98.18(0.53) 97.66(0.30) 98.17(0.30)
no 98.26(0.28) 98.49(0.31) 98.39(0.22) 98.90(0.18) 98.27(0.19) 98.81(0.17)

New-thyroid
yes 94.87(5.00) 94.79(10.14) 94.54(10.10) 94.73(9.24) 92.72(10.55) 93.44(9.74)
no 94.87(5.00) 94.79(10.14) 94.54(10.10) 94.98(9.38) 92.72(10.55) 93.69(9.90)

E.Coli
yes 88.75(12.45) 80.32(19.96) 80.34(19.85) 91.57(7.81) 83.97(21.27) 91.73(8.00)
no 88.64(12.46) 81.13(20.00) 81.95(19.90) 94.03(5.56) 83.76(21.17) 92.04(8.15)

Satimage
yes 92.34(1.27) 92.25(1.45) 92.73(1.38) 94.21(1.76) 92.85(1.19) 94.42(1.53)
no 92.86(1.29) 92.35(1.35) 92.90(1.38) 95.11(1.29) 92.84(1.22) 95.06(1.27)

Flag
yes 71.13(28.95) 49.12(21.57) 75.85(30.26) 45.00(15.81) 45.00(15.81) 44.47(15.71)
no 78.35(29.98) 78.90(28.63) 75.64(29.37) 78.59(28.75) 81.73(29.51) 76.13(27.80)

Glass
yes 82.44(8.99) 58.44(13.15) 72.69(14.07) 87.15(16.47) 72.16(16.84) 91.67(12.76)
no 80.47(13.25) 64.31(14.21) 75.44(11.61) 87.00(16.75) 78.76(12.52) 91.67(12.76)

Letter-a
yes 99.35(0.48) 99.60(0.37) 99.61(0.37) 99.61(0.40) 99.66(0.46) 99.60(0.40)
no 99.46(0.42) 99.66(0.37) 99.65(0.38) 99.67(0.37) 99.67(0.45) 99.67(0.37)

Nursery
yes 97.52(0.82) 99.55(0.21) 98.77(0.35) 99.80(0.08) 99.47(0.19) 99.79(0.12)
no 98.76(0.22) 99.84(0.13) 99.57(0.21) 99.89(0.08) 99.83(0.08) 99.89(0.09)

Table 6: Performance ranking for original and balanced data sets for pruned decision trees.
Data set 1o 2o 3o 4o 5o 6o 7o 8o 9o 10o 11o

Pima Smt RdOvr Smt+TmkSmt+ENN Tmk NCL Original RdUdr CNN+Tmk CNN* OSS*
German RdOvr Smt+TmkSmt+ENNSmt RdUdr CNN CNN+Tmk*OSS* Original* Tmk* NCL*
Post-operativeRdOvr Smt+ENNSmt Original CNN RdUdr CNN+Tmk OSS* Tmk* NCL* Smt+Tmk*
Haberman Smt+ENNSmt+TmkSmt RdOvr NCL RdUdr Tmk OSS* CNN* Original* CNN+Tmk*
Splice-ie RdOvr Original Tmk Smt CNN NCL Smt+Tmk Smt+ENN*CNN+Tmk*RdUdr* OSS*
Splice-ei Smt Smt+TmkSmt+ENNCNN+TmkOSS RdOvr Tmk CNN NCL Original RdUdr
Vehicle RdOvr Smt Smt+TmkOSS CNN OriginalCNN+Tmk Tmk NCL* Smt+ENN* RdUdr*
Letter-vowel Smt+ENNSmt+TmkSmt RdOvr Tmk* NCL* Original* CNN* CNN+Tmk*RdUdr* OSS*
New-thyroid Smt+ENNSmt+TmkSmt RdOvr RdUdr CNN Original Tmk CNN+Tmk NCL OSS
E.Coli Smt+TmkSmt Smt+ENNRdOvr NCL Tmk RdUdr Original OSS CNN+Tmk*CNN*
Satimage Smt+ENNSmt Smt+TmkRdOvr NCL Tmk Original* OSS* CNN+Tmk*RdUdr* CNN*
Flag RdOvr Smt+ENNSmt+TmkCNN+TmkSmt RdUdr CNN* OSS* Tmk* Original* NCL*
Glass Smt+ENNRdOvr NCL Smt Smt+TmkOriginalTmk RdUdr CNN+Tmk*OSS* CNN*
Letter-a Smt+TmkSmt+ENNSmt RdOvr OSS OriginalTmk CNN+Tmk NCL CNN RdUdr*
Nursery RdOvr Tmk Original NCL CNN* OSS* Smt+Tmk* Smt* CNN+Tmk*Smt+ENN* RdUdr*

Table 7: Performance ranking for original and balanced data sets for unpruned decision trees.
Data set 1o 2o 3o 4o 5o 6o 7o 8o 9o 10o 11o

Pima RdOvr Smt Smt+TmkSmt+ENNTmk NCL Original CNN+Tmk RdUdr CNN* OSS*
German Original Tmk RdOvr NCL RdUdr Smt Smt+Tmk Smt+ENN OSS CNN CNN+Tmk
Post-operativeOriginal CNN+TmkRdOvr Smt Tmk CNN OSS Smt+ENN RdUdr Smt+Tmk* NCL*
Haberman Smt+TmkSmt+ENN Smt RdOvr Tmk NCL RdUdr Original OSS* CNN* CNN+Tmk*
Splice-ie Original Smt Tmk CNN NCL Smt+Tmk RdOvr OSS* Smt+ENN* CNN+Tmk*RdUdr*
Splice-ei RdOvr Smt Smt+TmkSmt+ENNOriginal CNN+TmkTmk NCL OSS CNN RdUdr
Vehicle RdOvr Smt Smt+TmkOSS CNN Original CNN+TmkTmk Smt+ENN NCL RdUdr*
Letter-vowel Smt+ENNSmt Smt+TmkTmk* RdOvr* NCL* Original* CNN* CNN+Tmk*OSS* RdUdr*
New-thyroid Smt+ENNSmt Smt+TmkRdOvr Original Tmk RdUdr CNN CNN+Tmk NCL OSS
E.Coli Smt+TmkSmt Smt+ENNTmk RdOvr Original NCL RdUdr OSS CNN+Tmk*CNN*
Satimage Smt+ENNSmt Smt+TmkRdOvr Tmk NCL Original CNN+Tmk*RdUdr* OSS* CNN*
Flag Smt+TmkOSS RdOvr CNN Tmk Smt+ENN RdUdr Original NCL CNN+Tmk Smt
Glass Smt+ENNRdOvr NCL Smt Smt+TmkOriginal Tmk RdUdr OSS* CNN+Tmk*CNN*
Letter-a Smt Smt+Tmk Smt+ENNRdOvr Tmk OSS NCL Original CNN CNN+Tmk RdUdr*
Nursery RdOvr Original NCL Tmk CNN OSS* Smt* CNN+Tmk*Smt+Tmk* Smt+ENN* RdUdr*

method, not considering the results obtained in the original
data sets, are highlighted with a light gray color.

Figure 6 shows the results in Table 8 in graphical form,

where it can be observed that over-sampled data sets usu-
ally lead to an increase in the number of induced rules if
compared to the ones induced with the original data sets.
Comparing the mean number of rules obtained with the

Sigkdd Explorations. Volume 6, Issue 1 - Page 27

Table 8: Number of rules (branches) for the original and over-sampled data sets and unpruned decision trees.
Data set Original Rand Over Smote Smote+Tomek Smote+ENN
Pima 29.90(6.06) 63.80(13.15) 57.70(11.52) 54.20(12.91) 47.50(8.76)
German 315.50(21.41) 410.60(28.64) 367.30(20.85) 355.10(24.20) 261.00(28.08)
Post-operative 20.40(3.86) 36.80(3.05) 38.60(4.35) 32.70(5.87) 25.90(4.09)
Haberman 7.80(3.79) 25.20(10.94) 23.20(9.61) 25.00(7.70) 30.30(4.92)
Splice-ie 203.50(7.78) 258.70(13.07) 443.20(16.69) 340.60(21.34) 307.90(17.21)
Splice-ei 167.80(9.40) 193.30(7.41) 374.50(20.41) 283.90(14.90) 248.80(12.90)
Vehicle 26.20(3.29) 28.90(2.60) 34.90(3.38) 34.90(3.38) 29.20(2.82)
Letter-vowel 534.50(11.92) 678.80(19.07) 1084.50(19.61) 1083.20(20.12) 1022.00(26.34)
New-thyroid 5.40(0.84) 5.10(0.32) 6.90(1.29) 6.90(1.29) 6.90(0.99)
E-coli 11.60(3.03) 17.70(2.91) 16.70(3.20) 16.50(3.84) 12.70(3.23)
Satimage 198.80(11.04) 252.70(9.33) 404.60(12.97) 404.60(12.97) 339.40(13.80)
Flag 28.60(6.52) 46.30(7.72) 52.50(12.47) 46.50(13.36) 40.30(9.09)
Glass 9.40(2.22) 13.00(1.33) 17.70(1.77) 17.70(1.77) 15.50(1.58)
Letter-a 59.10(3.45) 88.00(5.56) 257.60(15.42) 257.60(15.42) 252.60(18.23)
Nursery 229.40(4.65) 282.50(5.34) 1238.30(28.91) 1204.70(27.94) 766.30(77.24)

Table 9: Mean number of conditions per rule for the original and over-sampled data sets and unpruned decision trees.
Data set Original Rand Over Smote Smote+Tomek Smote+ENN
Pima 6.21(0.61) 7.92(0.64) 7.74(0.44) 7.59(0.54) 7.27(0.67)
German 6.10(0.17) 6.89(0.25) 10.27(0.51) 9.68(0.32) 7.35(0.58)
Post-operative 3.61(0.41) 4.86(0.26) 5.36(0.37) 4.75(0.52) 4.46(0.50)
Haberman 3.45(1.36) 5.71(1.43) 5.61(1.27) 5.81(1.02) 6.45(0.60)
Splice-ie 6.04(0.09) 6.15(0.04) 6.08(0.08) 6.00(0.09) 5.58(0.11)
Splice-ei 5.46(0.14) 5.70(0.08) 5.51(0.07) 5.41(0.09) 4.91(0.09)
Vehicle 7.21(0.70) 7.03(0.44) 7.09(0.50) 7.09(0.50) 6.63(0.38)
Letter-vowel 20.96(1.19) 19.32(0.82) 18.78(0.40) 18.78(0.40) 18.32(0.43)
New-thyroid 2.76(0.39) 2.85(0.17) 3.12(0.26) 3.12(0.26) 3.08(0.20)
E-coli 4.43(0.79) 5.48(0.41) 4.98(0.60) 4.92(0.65) 4.15(0.49)
Satimage 12.13(0.46) 15.93(0.42) 13.89(0.64) 13.89(0.64) 12.54(0.36)
Flag 3.92(0.70) 5.42(0.55) 9.43(1.04) 8.75(1.53) 6.71(1.23)
Glass 4.20(0.61) 5.80(0.51) 5.92(0.50) 5.92(0.50) 5.51(0.32)
Letter-a 7.30(0.22) 10.35(0.64) 10.97(0.38) 10.97(0.38) 10.86(0.36)
Nursery 6.51(0.01) 6.84(0.03) 6.87(0.03) 6.84(0.03) 6.41(0.12)

over-sampled data sets, Random over-sampling and Smote
+ ENN are the methods that provide a smaller increase in
the mean number of rules. It was expected that the appli-
cation of over-sampling would result in an increase in the
mean number of rules, since over-sampling increases the to-
tal number of training examples, which usually generates
larger decision trees. It can also be considered unexpected
that Random over-sampling is competitive with Smote +
Tomek and Smote + ENN in the number of induced rules,
once Tomek and ENN were applied as data cleaning meth-
ods with the objective of eliminating noise examples and
thus simplifying the induced decision trees.

Figure 6: Mean number of induced rules for original and
balanced data sets and unpruned decision trees.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600

M
ea

n
nu

m
be

r
of

 r
ul

es
 -

 b
al

an
ce

d
da

ta

Mean number of rules - original data

Original
Random over-sampling

Smote

Smote+ENN
Smote+Tomek

The results presented in Table 9 are shown in a graph in

Figure 7 allowing a clearer comparison for the mean number
of conditions per rule for the over-sampled data sets. The
Smote + ENN method provided very good results. In fact,
it was the best ranked in 10 data sets. Furthermore, this
method was even able to obtain smaller values than those
achieved by decision trees induced from the original data sets
in 6 data sets. Moreover, considering only the over-sampled
data sets, this method was the best ranked for another 4
data sets.

Figure 7: Mean number of conditions per rule for original
and balanced data sets and unpruned decision trees.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2 4 6 8 10 12 14 16 18 20 22

M
ea

n
nu

m
be

r
of

 c
on

di
tio

ns
 p

er
 r

ul
e

ba
la

nc
ed

 d
at

a

Mean number of conditions per rule - original data

Original
Random over-sampling

Smote

Smote+ENN
Smote+Tomek

6. CONCLUSION AND LIMITATIONS
In this work we analyze the behavior of several over and
under-sampling methods to deal with the problem of learn-

Sigkdd Explorations. Volume 6, Issue 1 - Page 28

ing from imbalanced data sets. Our results show that the
over-sampling methods in general, and Smote + Tomek and
Smote + ENN (two of the methods proposed in this work) in
particular for data sets with few positive (minority) exam-
ples, provided very good results in practice. Moreover, Ran-
dom over-sampling, frequently considered an unprosperous
method provided competitive results with the more complex
methods. As a general recommendation, Smote + Tomek or
Smote + ENN might be applied to data sets with a small
number of positive instances, a condition that is likely to
lead to classification performance problems for imbalanced
data sets. For data sets with larger number of positive ex-
amples, the Random over-sampling method which is compu-
tationally less expensive than other methods would produce
meaningful results.

It should be noted that allocating half of the training exam-
ples to the minority class does not always provide optimal
results [23]. We plan to address this issue in future research.
Furthermore, some under-sampling methods, such as Tomek
links and NCL, that do not originally allow the user to spec-
ify the resulting class distribution, must be improved to in-
clude this feature. Another natural extension to this work
is to analyze the ROC curves obtained from the classifiers.
This might provide us with a more in depth understanding
of the behavior of balancing and cleaning methods.

Acknowledgements. We wish to thank the anonymous
reviewers and Dorival Leão Pinto Júnior for their helpful
comments. This research was partially supported by the
Brazilian Research Councils CAPES and FAPESP.

7. REFERENCES

[1] Batista, G. E. A. P. A., Bazan, A. L., and
Monard, M. C. Balancing Training Data for Auto-
mated Annotation of Keywords: a Case Study. In WOB
(2003), pp. 35–43.

[2] Bauer, E., and Kohavi, R. An Empirical Comparison
of Voting Classification Algorithms: Bagging, Boosting,
and Variants. Machine Learning 36 (1999), 105–139.

[3] Blake, C., and Merz, C. UCI Repository of Machine
Learning Databases, 1998. http://www.ics.uci.edu/
~mlearn/MLRepository.html.

[4] Chawla, N. V. C4.5 and Imbalanced Data Sets: In-
vestigating the Effect of Sampling Method, Probabilis-
tic Estimate, and Decision Tree Structure. In Workshop
on Learning from Imbalanced Data Sets II (2003).

[5] Chawla, N. V., Bowyer, K. W., Hall, L. O.,
and Kegelmeyer, W. P. SMOTE: Synthetic Minority
Over-sampling Technique. JAIR 16 (2002), 321–357.

[6] Ciaccia, P., Patella, M., and Zezula, P. M-tree:
an Efficient Access Method for Similarity Search in
Metric Spaces. In VLDB (1997), pp. 426–435.

[7] Domingos, P. MetaCost: A General Method for Mak-
ing Classifiers Cost-Sensitive. In KDD (1999), pp. 155–
164.

[8] Drummond, C., and Holte, R. C. C4.5, Class Imbal-
ance, and Cost Sensitivity: Why Under-sampling beats
Over-sampling. In Workshop on Learning from Imbal-
anced Data Sets II (2003).

[9] Ferri, C., Flach, P., and Hernández-Orallo, J.
Learning Decision Trees Using the Area Under the ROC
Curve. In ICML (2002), pp. 139–146.

[10] Hand, D. J. Construction and Assessment of Classifi-
cation Rules. John Wiley and Sons, 1997.

[11] Hart, P. E. The Condensed Nearest Neighbor Rule.
IEEE Transactions on Information Theory IT-14
(1968), 515–516.

[12] Japkowicz, N. Class Imbalances: Are We Focusing
on the Right Issue? In Workshop on Learning from
Imbalanced Data Sets II (2003).

[13] Japkowicz, N., and Stephen, S. The Class Imbal-
ance Problem: A Systematic Study. IDA Journal 6, 5
(2002), 429–449.

[14] Kubat, M., and Matwin, S. Addressing the Course
of Imbalanced Training Sets: One-sided Selection. In
ICML (1997), pp. 179–186.

[15] Laurikkala, J. Improving Identification of Difficult
Small Classes by Balancing Class Distribution. Tech.
Rep. A-2001-2, University of Tampere, 2001.

[16] Ling, C. X., and Li, C. Data Mining for Direct Min-
ing: Problems and Solutions. In KDD (1998), pp. 73–
79.

[17] Mitchell, T. M. Machine Learning. McGraw-Hill,
1997.

[18] Prati, R. C., Batista, G. E. A. P. A., and
Monard, M. C. Class Imbalances versus Class Over-
lapping: an Analysis of a Learning System Behavior. In
MICAI (2004), pp. 312–321. LNAI 2972.

[19] Provost, F. J., and Fawcett, T. Analysis and Vi-
sualization of Classifier Performance: Comparison un-
der Imprecise Class and Cost Distributions. In KDD
(1997), pp. 43–48.

[20] Quinlan, J. R. C4.5 Programs for Machine Learning.
Morgan Kaufmann, CA, 1988.

[21] Stanfill, C., and Waltz, D. Instance-based Learning
Algorithms. Communications of the ACM 12 (1986),
1213–1228.

[22] Tomek, I. Two Modifications of CNN. IEEE Trans-
actions on Systems Man and Communications SMC-6
(1976), 769–772.

[23] Weiss, G. M., and Provost, F. Learning When
Training Data are Costly: The Effect of Class Distri-
bution on Tree Induction. JAIR 19 (2003), 315–354.

[24] Wilson, D. L. Asymptotic Properties of Nearest
Neighbor Rules Using Edited Data. IEEE Transactions
on Systems, Man, and Communications 2, 3 (1972),
408–421.

[25] Wilson, D. R., and Martinez, T. R. Reduction
Techniques for Exemplar-Based Learning Algorithms.
Machine Learning 38, 3 (2000), 257–286.

[26] Zadrozny, B., and Elkan, C. Learning and Mak-
ing Decisions When Costs and Probabilities are Both
Unknown. In KDD (2001), pp. 204–213.

Sigkdd Explorations. Volume 6, Issue 1 - Page 29

